Can a Spherical Model Substitute for a Realistic Head Model in Forward and Inverse MEG Simulations?

نویسنده

  • R. Van Uitert
چکیده

Although the human head is not a sphere, models using spheres have been employed to simplify forward and inverse magnetoencephalographic (MEG) calculations. We compared the normal component of the magnetic field calculated at 61 detectors and the localization accuracy of 5 different spherical models to the results obtained using the finite element method (FEM) in a realistic head model. The spherical models used were an analytic equation for a single homogeneous sphere; a FEM single homogeneous sphere; concentric FEM spheres with skin, skull, and brain conductivity layers; concentric FEM spheres with skin, skull, CSF, gray, and white matter conductivity layers; and an overlapping sphere head model. No spherical model proved to be consistently the most accurate in determining forward magnetic field values or in localizing the 5 different dipoles used. Forward and inverse results for the spherical models tended to correspond more closely with the realistic model results for dipoles located near the surface of the head than for those deep inside the head. Large discrepancies in calculated magnetic field values and localization errors for some dipoles, however, limit at least these 5 spherical models as substitutes for the realistic head model in forward and inverse MEG calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume Currents in Forward and Inverse MEG Simulations Using Realistic Head Models

Volume currents are important for the accurate calculation of magnetoencephalographic (MEG) forward or inverse simulations in realistic head models. We verify the accuracy of the finite element method in MEG simulations by comparing its results for spheres containing dipoles to those obtained from the analytic solution. We then use the finite element method to show that, in an inhomogeneous, no...

متن کامل

A study of dipole localization accuracy for MEG and EEG using a human skull phantom.

OBJECTIVE To investigate the accuracy of forward and inverse techniques for EEG and MEG dipole localization. DESIGN AND METHODS A human skull phantom was constructed with brain, skull and scalp layers and realistic relative conductivities. Thirty two independent current dipoles were distributed within the 'brain' region and EEG and MEG data collected separately for each dipole. The true dipol...

متن کامل

Rapidly recomputable EEG forward models for realistic head shapes.

With the increasing availability of surface extraction techniques for magnetic resonance and x-ray computed tomography images, realistic head models can be readily generated as forward models in the analysis of electroencephalography (EEG) and magnetoencephalography (MEG) data. Inverse analysis of this data, however, requires that the forward model be computationally efficient. We propose two m...

متن کامل

A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG.

The spherical head model has been used in magnetoencephalography (MEG) as a simple forward model for calculating the external magnetic fields resulting from neural activity. For more realistic head shapes, the boundary element method (BEM) or similar numerical methods are used, but at greatly increased computational cost. We introduce a sensor-weighted overlapping-sphere (OS) head model for rap...

متن کامل

Combined MEG and fMRI model

An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002